

The carbon footprint of electricity is 461.1 kg CO2e per Megawatt-Hour (MWh) for the world average electricity generation in 2019. Consumer Ecology estimates global electricity emissions to be 12,470 Million Metric Tonnes (MMT) CO2e in 2019, which represents 37.3% of global CO2 emissions from energy (IEA, 2022A).
Since 1990, the carbon intensity of electricity decreased by 31.9 kg CO2e / MWh, which is a 6.6% decrease. However, global emissions have increased from 5,874 MMT CO2e in 1990 to 12,740 MMT CO2e in 2019, which is more than double the annual emissions in 1990.
The carbon footprint of electricity varies by the generation source. Coal power generates the highest emissions at 863 kg CO2e / MWh, while tidal power generates the lowest, at 8.0 kg CO2e / MWh. Even renewable energy still generates CO2 emissions due to mining, manufacturing, construction, maintenance, and end of life disposal, however tidal power emits only 0.93% as much CO2 as coal power. See the below chart for a comparison of the carbon intensity of different sources of electricity.
What is the Carbon Footprint of Electricity Around the World?
Consumer Ecology analyzed the carbon footprint of electricity in the top 50 energy using countries in the world, the full list is available at the end of this page. One way of looking at the carbon footprint of electricity is to measure carbon intensity, or how much CO2 is generated per unit of power. To put it another way, how much CO2 will I emit if I use 1 megawatt-hour of electricity in any given country? The average US household uses about 10.7 megawatt-hours each year (EIA, 2021). Carbon intensity is a great way to measure how well a country is doing at decarbonizing its electricity.

Paraguay earns the award for the lowest carbon electricity, which comes from nearly 100% hydro power. Among the top 5 countries with the lowest carbon intensity of electricity, 4 of the 5 countries are considered Developed Economies by the United Nations (2020), while the 4 of the 5 of the highest carbon intensity countries are considered Developing Economies, and are highly dependent on coal power. If you use electricity in Paraguay compared to South Africa, the highest carbon intensity country, you will generate only 2.7% as much carbon compared to South Africa.
The second way of looking at the carbon footprint of electricity is to measure total carbon emissions, or how much CO2 is generated from all of a country’s electricity generation, which is the most impactful measure of how much a country contributes to climate change. When we take this perspective, the picture changes quite a bit. Now we see that China is the largest electricity emitter, with 4,506.2 Million Metric Tonnes (MMT) CO2e in 2020, which is 36.1% of all electricity emissions in 2019 (note, 2020 world data is not yet available as of June, 2022). Because China emits over a third of global electricity emissions, its emissions equal nearly as much as the next 8 countries in the below graph. In fact, the top 10 countries emitted 73.7% of all 2019 emissions from electricity. The next 40 countries only emit an additional 10.7% of 2019 emissions.

Which Countries Decreased Their Electricity Emissions the Most Since 1990?
Emissions decreases can be viewed from an electricity intensity perspective, as well as from a total emissions decrease perspective. Among the top 50 highest energy using countries, the top 10 countries who lowered their electricity emission intensity are as follows:
- 67.7% – United Kingdom
- 58.4% – Portugal
- 58.3% – Finland
- 56.9% – Romania
- 56.3% – Ireland
- 51.7% – Spain
- 51.6% – Greece
- 49.5% – Italy
- 49.1% – Austria
- 43.6% – Ukraine
- 174.8 MMT CO2e – United States
- 144.2 MMT CO2e – United Kingdom
- 120.1 MMT CO2e – Ukraine
- 119.6 MMT CO2e – Germany
- 105.4 MMT CO2e – Russia
- 47.3 MMT CO2e – Italy
- 23.2 MMT CO2e – Romania
- 20.7 MMT CO2e – Canada
- 11.2 MMT CO2e – France
- 10.2 MMT CO2e – Spain
Which Countries Have the Highest per Capita Emissions From Electricity?
Per Capita emissions are emissions per person in a country. Per Capita emissions are a useful measure because they help us understand if a country is emitting a lot because it uses too much electricity, or because it has a lot of people that need electricity. The top 10 countries with the highest per Capita emissions are listed as follows:
- 6.80 MT CO2e / person – Taiwan
- 6.13 MT CO2e / person – Australia
- 5.39 MT CO2e / person – South Korea
- 4.85 MT CO2e / person – United States
- 4.49 MT CO2e / person – Singapore
- 4.47 MT CO2e / person – Israel
- 4.11 MT CO2e / person – Japan
- 3.40 MT CO2e / person – Serbia
- 3.25 MT CO2e / person – China
- 3.07 MT CO2e / person – South Africa
How Much of the World's Electricity Comes From Renewable Energy?
In 2019, the world generated 26.6% (7,198 Terawatt-Hours: TWh) of its energy from renewable energy, 10.3% (2,790 TWh) from nuclear, and 63.1% (17,056 TWh) from fossil fuels, the majority from coal power (9,914 TWh). China is the world’s leading renewable energy user, with 2,200 TWh of renewable energy generation, which is slightly more than the next 4 highest countries’ renewable energy generation (United States, Brazil, Canada, India). However, despite the large amount of renewable energy generation in China, the country generates 28.2% of its electricity from renewable sources, and still has a higher electricity emission intensity than the world average, due to its high use of coal power.
Which countries use the most renewable energy?
Among the top 50 energy using countries in the world, the top 10 countries who used the most renewable energy as a percentage of total electricity in 2020 are listed as follows:
- 100% – Paraguay
- 98.7% – Norway
- 84.5% – Brazil
- 82.0% – Austria
- 80.6% – New Zealand
- 79.9% – Ecuador
- 71.5% – Laos
- 70.7% – Colombia
- 68.5% – Sweden
- 67.9% – Canada
- 35.8% – Ireland
- 24.2% – United Kingdom
- 22.8% – Portugal
- 22.5% – Germany
- 21.5% – Spain
- 20.1% – Greece
- 16.9% – Sweden
- 14.5% – Belgium
- 12.5% – Netherlands
- 12.4% – Romania
- 9.4% – Greece
- 9.3% – Chile
- 8.9% – Italy
- 8.7% – Germany
- 7.9% – Australia
- 7.8% – Spain
- 7.6% – Japan
- 7.0% – Hungary
- 6.5% – Netherlands
- 5.6% – Belgium
- 100% – Paraguay
- 92.0% – Norway
- 78.0% – Ecuador
- 71.4% – Laos
- 69.3% – Colombia
- 63.8% – Brazil
- 62.5% – Austria
- 60.0% – Canada
- 57.7% – Peru
- 57.3% – Switzerland
Carbon Footprint of Electricity Data Set
Primary data is supplied by the International Energy Agency (2022B) with additional modeling by Consumer Ecology, as described in the Data and Assumptions Section below.
Country | Generation Rank | 2020 Generation (GWh) | 1990 Generation (GWh) | 2020 Emission Intensity (kg CO2e / MWh) | 1990 Emission Intensity (kg CO2e / MWh) | % Change in Emission Intensity | 2020 Emissions (MMT CO2e) | 1990 Emissions (MMT CO2e) | 2020 Change in Emissions (MMT CO2e) | % Change in Total Emissions | Per Capita Emissions (MT CO2e / Person) |
---|---|---|---|---|---|---|---|---|---|---|---|
China | 1 | 7,815,198 | 650,206 | 576.6 | 695.3 | -17.1% | 4,506.2 | 452.1 | 4,054.2 | 896.76% | 3.25 |
United States | 2 | 4,247,674 | 3,218,621 | 378.3 | 553.5 | -31.7% | 1,606.8 | 1,781.5 | -174.8 | -9.81% | 4.85 |
India | 3 | 1,610,968 | 289,470 | 653.5 | 622.4 | 5.0% | 1,052.7 | 180.2 | 872.6 | 484.35% | 0.76 |
Russia | 4 | 1,085,448 | 1,082,152 | 361.2 | 459.7 | -21.4% | 392.1 | 497.4 | -105.4 | -21.18% | 2.72 |
Japan | 5 | 1,031,039 | 870,672 | 501.9 | 474.5 | 5.8% | 517.5 | 413.1 | 104.4 | 25.27% | 4.11 |
Canada | 6 | 640,888 | 482,152 | 118.6 | 200.6 | -40.9% | 76.0 | 96.7 | -20.7 | -21.40% | 2.00 |
Brazil | 7 | 621,199 | 222,821 | 100.9 | 57.8 | 74.7% | 62.7 | 12.9 | 49.8 | 386.92% | 0.29 |
South Korea | 8 | 586,330 | 105,371 | 476.8 | 347.0 | 37.4% | 279.6 | 36.6 | 243.0 | 664.59% | 5.39 |
Germany | 9 | 581,995 | 550,015 | 325.0 | 561.4 | -42.1% | 189.1 | 308.8 | -119.6 | -38.74% | 2.27 |
France | 10 | 532,435 | 420,752 | 63.0 | 106.2 | -40.7% | 33.5 | 44.7 | -11.2 | -24.95% | 0.50 |
Mexico | 11 | 343,488 | 115,837 | 424.5 | 574.7 | -26.1% | 145.8 | 66.6 | 79.2 | 119.01% | 1.13 |
Iran | 12 | 325,019 | 59,102 | 486.4 | 570.0 | -14.7% | 158.1 | 33.7 | 124.4 | 369.32% | 1.88 |
United Kingdom | 13 | 312,759 | 319,737 | 212.9 | 659.2 | -67.7% | 66.6 | 210.8 | -144.2 | -68.41% | 0.99 |
Turkey | 14 | 305,431 | 57,543 | 422.1 | 454.6 | -7.1% | 128.9 | 26.2 | 102.8 | 392.90% | 1.53 |
Indonesia | 15 | 287,988 | 32,667 | 654.7 | 668.1 | -2.0% | 188.5 | 21.8 | 166.7 | 763.95% | 0.69 |
Italy | 16 | 281,487 | 216,600 | 319.9 | 633.8 | -49.5% | 90.0 | 137.3 | -47.2 | -34.42% | 1.51 |
Taiwan | 17 | 280,128 | 89,262 | 578.2 | 460.0 | 25.7% | 162.0 | 41.1 | 120.9 | 294.48% | 6.80 |
Australia | 18 | 265,178 | 155,019 | 593.5 | 742.8 | -20.1% | 157.4 | 115.1 | 42.2 | 36.69% | 6.13 |
Spain | 19 | 262,296 | 151,923 | 195.9 | 405.4 | -51.7% | 51.4 | 61.6 | -10.2 | -16.58% | 1.08 |
South Africa | 20 | 239,458 | 167,226 | 759.5 | 805.7 | -5.7% | 181.9 | 134.7 | 47.1 | 34.99% | 3.07 |
Thailand | 21 | 186,179 | 44,176 | 488.0 | 611.1 | -20.1% | 90.9 | 27.0 | 63.9 | 236.55% | 1.30 |
Sweden | 22 | 162,618 | 146,514 | 35.1 | 31.2 | 12.5% | 5.7 | 4.6 | 1.1 | 24.87% | 0.55 |
Poland | 23 | 157,933 | 136,311 | 666.2 | 840.4 | -20.7% | 105.2 | 114.6 | -9.3 | -8.15% | 2.78 |
Norway | 24 | 153,966 | 121,848 | 26.3 | 21.2 | 24.3% | 4.1 | 2.6 | 1.5 | 57.01% | 0.75 |
Argentina | 25 | 144,925 | 51,014 | 352.9 | 302.1 | 16.8% | 51.1 | 15.4 | 35.7 | 231.86% | 1.13 |
Ukraine | 26 | 142,191 | 298,835 | 309.9 | 549.5 | -43.6% | 44.1 | 164.2 | -120.1 | -73.17% | 1.00 |
Netherlands | 27 | 122,477 | 71,968 | 379.3 | 615.5 | -38.4% | 46.5 | 44.3 | 2.2 | 4.87% | 2.66 |
Belgium | 28 | 88,914 | 70,923 | 178.3 | 303.1 | -41.2% | 15.9 | 21.5 | -5.6 | -26.25% | 1.37 |
Chile | 29 | 81,851 | 18,372 | 398.4 | 405.0 | -1.6% | 32.6 | 7.4 | 25.2 | 338.26% | 1.71 |
Czech Republic | 30 | 81,443 | 62,559 | 398.9 | 670.0 | -40.5% | 32.5 | 41.9 | -9.4 | -22.49% | 3.04 |
Israel | 31 | 72,866 | 20,898 | 565.8 | 851.4 | -33.5% | 41.2 | 17.8 | 23.4 | 131.71% | 4.47 |
Austria | 32 | 72,557 | 50,294 | 122.4 | 240.7 | -49.1% | 8.9 | 12.1 | -3.2 | -26.64% | 1.00 |
Colombia | 33 | 71,876 | 36,357 | 214.6 | 172.8 | 24.2% | 15.4 | 6.3 | 9.1 | 145.52% | 0.30 |
Switzerland | 34 | 71,546 | 56,175 | 25.3 | 27.1 | -6.6% | 1.8 | 1.5 | 0.3 | 18.90% | 0.21 |
Finland | 35 | 68,946 | 54,377 | 118.6 | 284.5 | -58.3% | 8.2 | 15.5 | -7.3 | -47.14% | 1.48 |
Romania | 36 | 56,090 | 64,309 | 248.5 | 576.9 | -56.9% | 13.9 | 37.1 | -23.2 | -62.43% | 0.72 |
Portugal | 37 | 53,776 | 28,501 | 233.0 | 560.6 | -58.4% | 12.5 | 16.0 | -3.4 | -21.58% | 1.22 |
Singapore | 38 | 53,414 | 15,714 | 477.7 | 831.8 | -42.6% | 25.5 | 13.1 | 12.4 | 95.21% | 4.49 |
Peru | 39 | 52,929 | 13,808 | 194.3 | 204.9 | -5.2% | 10.3 | 2.8 | 7.5 | 263.49% | 0.31 |
Paraguay | 40 | 47,178 | 27,185 | 20.5 | 20.7 | -1.0% | 1.0 | 0.6 | 0.4 | 71.87% | 0.14 |
Greece | 41 | 46,310 | 35,003 | 391.6 | 808.8 | -51.6% | 18.1 | 28.3 | -10.2 | -35.94% | 1.69 |
New Zealand | 42 | 45,169 | 32,265 | 134.0 | 122.2 | 9.7% | 6.1 | 3.9 | 2.1 | 53.51% | 1.19 |
Bulgaria | 43 | 40,752 | 42,141 | 331.0 | 500.5 | -33.9% | 13.5 | 21.1 | -7.6 | -36.05% | 1.95 |
Morocco | 44 | 40,056 | 9,628 | 667.4 | 741.4 | -10.0% | 26.7 | 7.1 | 19.6 | 274.51% | 0.72 |
Laos | 45 | 39,911 | 0.0% | 10.4 | 0.0 | 0.00% | 1.43 | ||||
Serbia | 46 | 38,101 | 39,759 | 614.8 | 673.9 | -8.8% | 23.4 | 26.8 | -3.4 | -12.57% | 3.40 |
Belarus | 47 | 37,932 | 39,526 | 491.9 | 655.0 | -24.9% | 18.7 | 25.9 | -7.2 | -27.93% | 1.99 |
Hungary | 48 | 34,924 | 28,436 | 235.9 | 386.0 | -38.9% | 8.2 | 11.0 | -2.7 | -24.94% | 0.84 |
Ireland | 49 | 32,298 | 14,515 | 306.2 | 701.3 | -56.3% | 9.9 | 10.2 | -0.3 | -2.85% | 1.98 |
Ecuador | 50 | 31,172 | 6,349 | 172.0 | 196.3 | -12.4% | 5.4 | 1.2 | 4.1 | 330.20% | 0.30 |
Data and Assumptions
- The Carbon Footprint of all energy sources except for Solar is based on NREL (2021), which uses cradle to grave emissions factors. The share of energy sources is based on the International Energy Agency (IEA, 2022B) with 2020 data. See the table below for individual source emission values and weights.
- The value for “Supercritical Pulverized Coal” in NREL (2021) is assumed for “Coal” in the IEA Database.
- The average value for “Natural Gas” of all technologies from NREL (2021) is assumed for “Natural Gas” in the IEA Database.
- The value for “Oil” in NREL (2021) is used for “Oil” in the IEA Database.
- The value for “Light Water Reactors” in NREL (2021) is used for “Nuclear” in the IEA Database.
- The average value for “Wind” for all technologies in NREL (2021) is used for “Wind” in the IEA Database.
- The average value for “Hydropower” for all technologies in NREL (2021) is used for “Hydro” in the IEA Database.
- The average value for “Biopower” in NREL (2021) is assumed for “Biofuels” in the IEA Database.
- The average value for “Geothermal” for all technologies in NREL (2021) is used for “Geothermal” in the IEA Database.
- The average value for “Concentrating Solar Power” in NREL (2021) is used for “Solar Thermal” in the IEA Database. Value is not adjusted for average solar radiation of each country because a reference solar radiation value is not given.
- The value for “Waste” in the IEA Database is based on Pfadt-Trilling et al. (2021), who performed a lifecycle of waste, including diverted waste streams from energy recovery, or Waste-to-Energy. The study found a net emission of 0.0824 kg CO2e / kWh, or 82.4 kg CO2e / MWh, which is used for the emission factor or waste energy. Value does not include methane recovery.
- The value for “Ocean” in NREL (2021) is used for “Tide” in the IEA Database.
- The weighted average value for all energy sources is used for “Other Sources” in the IEA Database. These sources primarily include energy recovery and purchases of waste heat from other industrial processes. “Other Sources” only made up 0.18% of world energy generation in 2019.
- See the “Further Resources” Section below for individual assumptions made for each additional fuel source.
- The carbon footprint of solar PV is based on the harmonized value of 25 g CO2e / kWh for monocrystalline solar PV reported by Louwen et al. (2016). Original value is based on Wetzel & Borchers (2015).
- Solar radiation value is based on the Global Solar Atlas (2022) Global Horizontal Irradiation average for all of all land below 60 degrees latitude. Average raster file value was obtained using QGIS (2022). Note this value is likely an underestimation of installed solar capacity, as solar is more likely to be installed in areas with higher solar radiation.
- Solar radiation based on the average of each country’s total solar resource by land area. For countries with land above 60 degrees latitude, only the portion of land below 60 degrees was averaged.
- No data is available for Finland because of its latitude. The value for Sweden is used as a proxy for Finland.
- Value adjusted to 24.7 g CO2e / kWh to adjust for 1,700 kWh / m2 / yr solar radiation reference value used in Wetzel & Borchers (2015).
- For further details see the Solar Panels Carbon Footprint & Environmental Impact Page.
- Population listed for per Capita emissions is from the World Bank (2020), with the exception of Taiwan. The population of Taiwan is subtracted from the population of China, based on World Meters (2022). While Taiwan is not officially a country, it is treated as a country for these purposes.
World Average Electricity Carbon Footprint (2019):
Fuel Source | % of Grid Electricity | Source Emissions (kg CO2e / MWh) | Weighted Emissions (kg CO2e / MWh) |
---|---|---|---|
Coal | 36.7% | 863.0 | 316.38 |
Natural Gas | 23.5% | 486.0 | 114.04 |
Hydro | 16.0% | 20.5 | 3.28 |
Nuclear | 10.3% | 13.0 | 1.34 |
Wind | 5.3% | 13.0 | 0.69 |
Oil | 2.8% | 840.0 | 23.21 |
Solar PV | 2.5% | 24.7 | 0.62 |
Biomass | 2.0% | 52.0 | 1.04 |
Waste | 0.4% | 82.4 | 0.34 |
Geothermal | 0.3% | 36.7 | 0.12 |
Solar Thermal | 0.0% | 28.0 | 0.01 |
Tidal | 0.0% | 8.0 | 0.00 |
Other Unknown Fuels | 0.2% | 461.1 | 0.83 |
Total | 100.0% | 461.08 |
- Coal Power Carbon Footprint & Environmental Impact
- Geothermal Power Carbon Footprint & Environmental Impact
- Hydropower Carbon Footprint & Environmental Impact
- Natural Gas Power Carbon Footprint & Environmental Impact
- Nuclear Power Carbon Footprint & Environmental Impact
- Solar Panels Carbon Footprint & Environmental Impact
- Wind Power Carbon Footprint & Environmental Impact
References
EIA: US Energy Information Administration. (2021). How Much Electricity Does an American Home Use?. See Link to Source
EIA: US Energy Information Administration. (August 15, 2016). Shale gas production drives world natural gas production growth. See Link to Source
Global Energy Monitor. (January, 2022). Global Coal Mine Tracker – Summary Tables – Summary Table 12 – Coal Production By Mine Type (Surface, Underground). See Link to Source
Global Solar Atlas. (2022). World Global Horizontal Irradiation. See Link to Source
IEA: International Energy Agency. (2022A). Global Energy Review 2021 – CO2 Emissions. See Link to Source
IEA: International Energy Agency. (2022B). Electricity – Electricity Generation by Source. See Link to Source
Louwen, A., Van Sark, W. G., Faaij, A. P., & Schropp, R. E. (2016). Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nature Communications, 7(1), 1-9.
NREL: National Renewable Energy Laboratory. (2021). Life Cycle Assessment Harmonization. See Link to Source
QGIS.org, 2022. QGIS Geographic Information System. QGIS Association. See Link to Source
World Bank. (2022). Population, total. See Link to Source
World Meters. (2022). Taiwan Population. See Link to Source